Kian Bagheri, Joint Doctoral Student^{1,2} Hasan Davani, Assistant Professor¹

Kian Bagheri, Joint Doctoral Student^{1,2} Hasan Davani, Assistant Professor¹

Kian Bagheri, Joint Doctoral Student^{1,2} Hasan Davani, Assistant Professor¹

Kian Bagheri, Joint Doctoral Student^{1,2} Hasan Davani, Assistant Professor¹

Data Input for PCSWMM	Source		
Digital Elevation Models	USGS Earth Explorer		
Hourly Rainfall Data	NOAA Climate Data Onli	ne	Use PCSWMM, a stormwater
Hydrologic soil groups	Soil Survey Geographic Data	abase	management model, to estimate pollutant transport (litter transport)
Evaporation Data	The California Irrigation Managemei System (CIMIS)	nt Information	loads through the urban environment into our waterways
Land Use Data	San Diego Association of Governmer /County of Los Angeles Enterp	· · · · · ·	
Logond		CALCULATION CONTRACTOR	<image/>

Data Input for PCSWMM	Source]	
Digital Elevation Models	USGS Earth Explore	er	-	Lice DCSW/MMA a stormwater
Hourly Rainfall Data	NOAA Climate Data Or	nline		Use PCSWMM, a stormwater
Hydrologic soil groups	Soil Survey Geographic D	atabase		management model, to estimate
Evaporation Data	The California Irrigation Managerr System (CIMIS)	nent Information	-	pollutant transport (litter transport) loads through the urban environment into our waterways
Land Use Data	San Diego Association of Governm /County of Los Angeles Ente	· · · · · ·		
Logond	<section-header></section-header>	Contraction of the second	VMM Mo SDRW	<image/> <section-header></section-header>
	0 225 4.5 9 Miles		E IL	5 mi

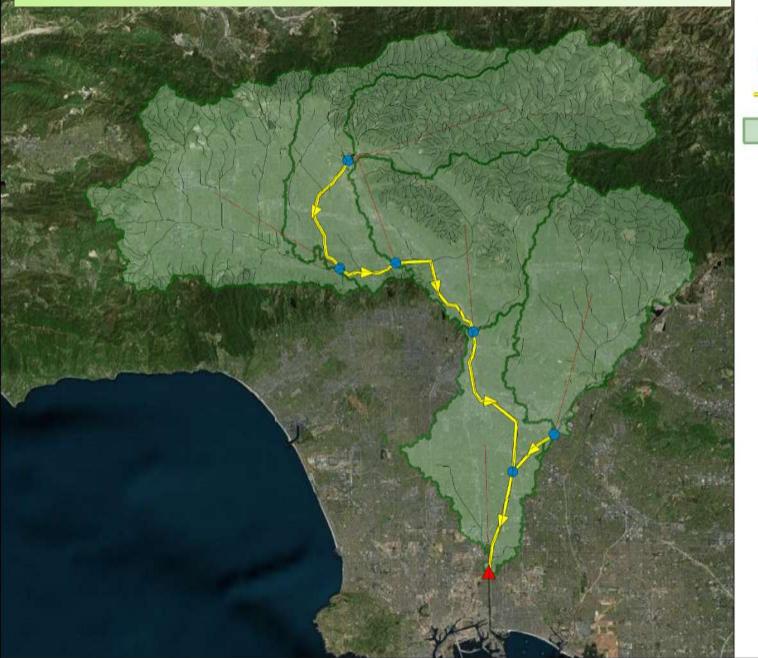
Data Input for PCSWMM	Source]	
Digital Elevation Models	USGS Earth Explore	er	-	Lice DCSW/MMA a stormwater
Hourly Rainfall Data	NOAA Climate Data Or	nline		Use PCSWMM, a stormwater
Hydrologic soil groups	Soil Survey Geographic D	atabase		management model, to estimate
Evaporation Data	The California Irrigation Managerr System (CIMIS)	nent Information	-	pollutant transport (litter transport) loads through the urban environment into our waterways
Land Use Data	San Diego Association of Governm /County of Los Angeles Ente	· · · · · ·		
Logond	<section-header></section-header>	Contraction of the second	VMM Mo SDRW	<image/> <section-header></section-header>
	0 225 4.5 9 Miles		E IL	5 mi

Data Input for PCSWMM	Source]	
Digital Elevation Models	USGS Earth Explore	er	-	Lice DCSW/MMA a stormwater
Hourly Rainfall Data	NOAA Climate Data Or	nline		Use PCSWMM, a stormwater
Hydrologic soil groups	Soil Survey Geographic D	atabase		management model, to estimate
Evaporation Data	The California Irrigation Managerr System (CIMIS)	nent Information	-	pollutant transport (litter transport) loads through the urban environment into our waterways
Land Use Data	San Diego Association of Governm /County of Los Angeles Ente	· · · · · ·		
Logond	<section-header></section-header>	Contraction of the second	VMM Mo SDRW	<image/> <section-header></section-header>
	0 225 4.5 9 Miles		E IL	5 mi

- Total Area: 834 sq. miles (533,760 acres)
- Population: ~9 million people
- Percentage of Impervious Surfaces: ~31 %
- Land Use:
 - 37% Residential
 - 8% Commercial
 - 11% Industrial
 - 44% Open Space
- Mean Annual Rainfall: ~21 inches

PCSWMM Model For Los Angeles River Watershed

Legend


Junctions

Outfalls

Conduits

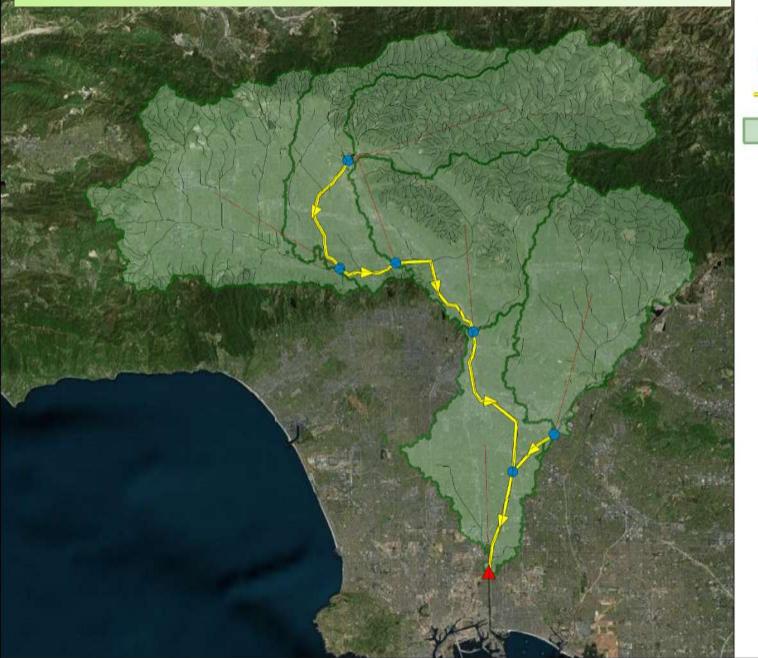
10 mi

Subcatchments

- Total Area: 834 sq. miles (533,760 acres)
- Population: ~9 million people
- Percentage of Impervious Surfaces: ~31 %
- Land Use:
 - 37% Residential
 - 8% Commercial
 - 11% Industrial
 - 44% Open Space
- Mean Annual Rainfall: ~21 inches

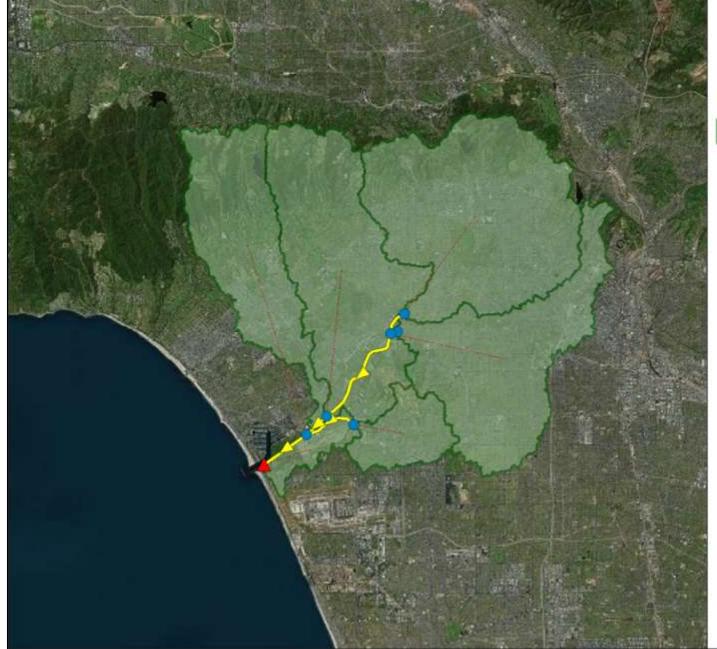
PCSWMM Model For Los Angeles River Watershed

Legend

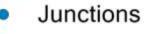

Junctions

Outfalls

Conduits


10 mi

Subcatchments



- Total Area: 130 sq. miles (83,200 acres)
- Population: ~1.5 million people
- Percentage of Impervious Surfaces: ~65 %
- Land Use:
 - 64% Residential
 - 8% Commercial
 - 4% Industrial
 - 17% Open Space
- Mean Annual Rainfall: ~16.4 inches

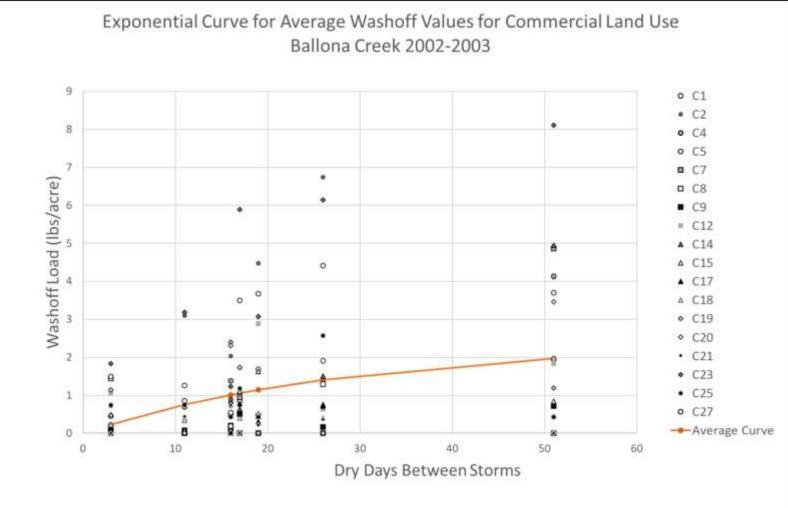
PCSWMM Model For Ballona Creek Watershed

Legend

- Outfalls
- Conduits
- Subcatchments

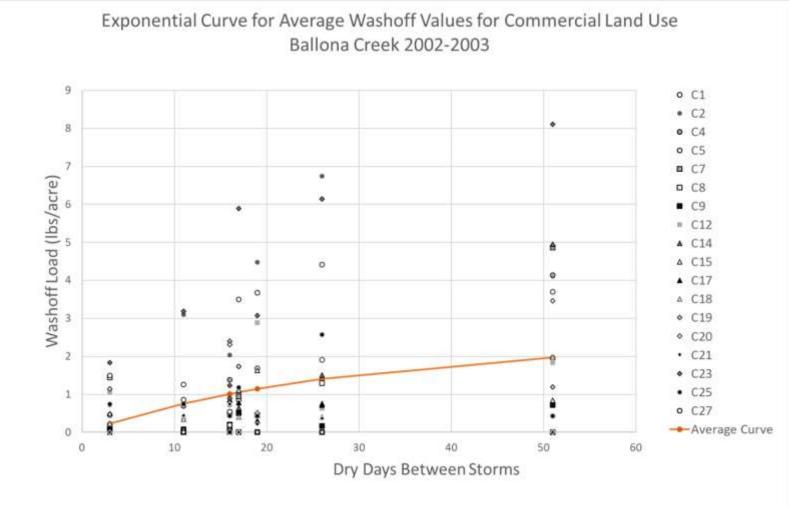
	Buildup and Washoff Gover	ning Equations
	Parameters A₁: is the maximum buildup possible (mass/unit area or unit curb length)	$Buildup = A_1^*(1 - exp(-A_2^*t))$
	 A₂: is the buildup rate constant controlling the speed of pollutant buildup (days⁻¹) A₃: is the washoff coefficient (inches⁻¹) 	where, Buildup = mass/ unit area (or curb length) t = number of preceding dry
	A_4 : is the washoff exponent (unitless)	Washoff = A ₃ *Runoff ^{A4} *Buildup
)	 Buildup Curves follow exponential growth until reaching a maximum buildup value Washoff is dependent on buildup mass available 	where, <i>Washoff</i> = load in mass/hr <i>Runoff</i> = inches/hr <i>Buildup</i> = mass of litter accumulated since last storm

 \cap

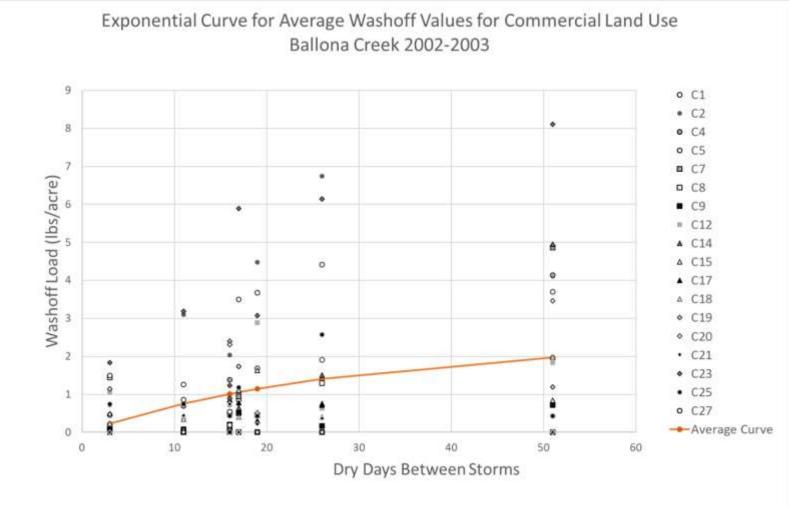

 \bigcap

	Buildup and Washoff Gover	ning Equations
)	ParametersA1: is the maximum buildup possible (mass/unit areaorunit curb length)	Buildup= A ₁ *(1-exp(-A ₂ *t) where,
	A ₂ : is the buildup rate constant controlling the speed of pollutant buildup (days ⁻¹)	Buildup = mass/ unit area (or curb length) t = number of preceding dry
	 A₃: is the washoff coefficient (inches⁻¹) A₄: is the washoff exponent (unitless) 	Washoff = A_3 *Runoff ^{A₄} *Buildup
	 Buildup Curves follow exponential growth until reaching a maximum buildup value Washoff is dependent on buildup mass available 	where, <i>Washoff</i> = load in mass/hr <i>Runoff</i> = inches/hr <i>Buildup</i> = mass of litter accumulated since last storm

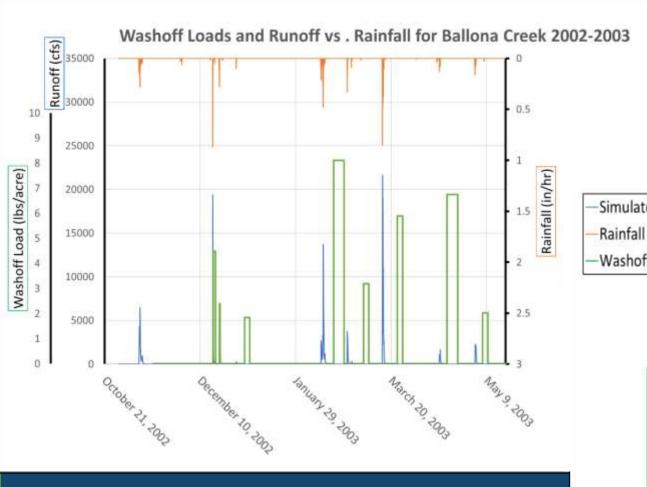
 \cap


 \bigcap

TRASH FROM BALLONA CREEK YEAR 2002-2003

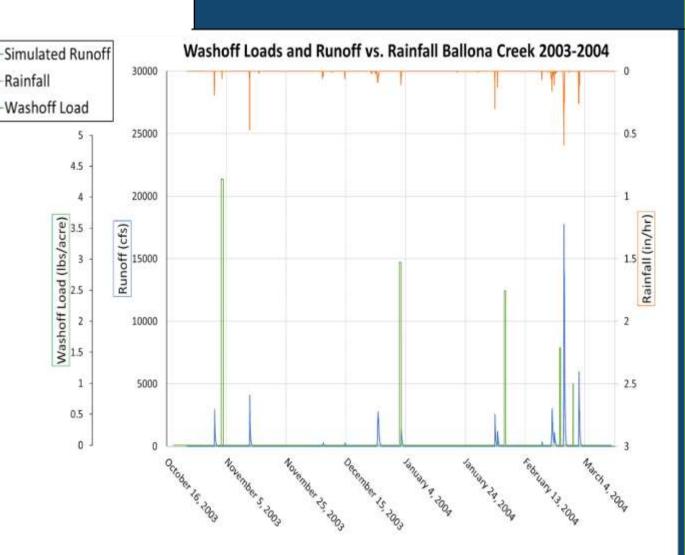

- Data from Los Angeles County Public Works "Trash Baseline Monitoring Report"
- 500 Catch Basin Inserts Across Los Angeles River and Ballona Creek Watersheds
- Spanning 5 Land Uses: Commercial, Industrial, High Density Single Family Residential, Low Density Single Family Residential, and Open Space
- Sampled Each Watershed for two years from 2002-2004
- C1-C27 Site ID for Commercial land use trash collection sites

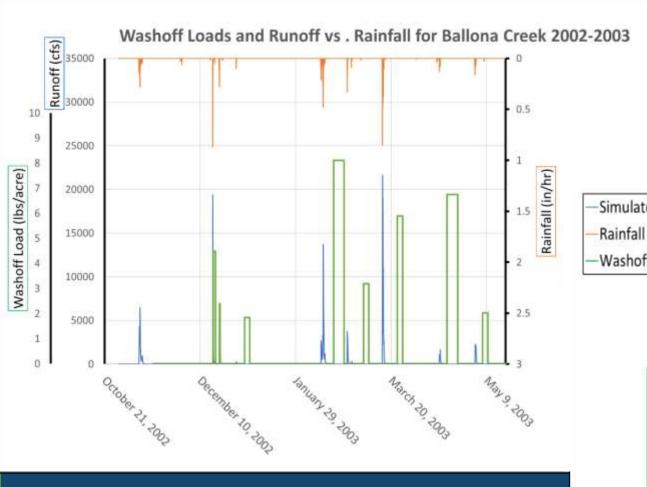
TRASH FROM BALLONA CREEK YEAR 2002-2003



- Data from Los Angeles County Public Works "Trash Baseline Monitoring Report"
- 500 Catch Basin Inserts Across Los Angeles River and Ballona Creek Watersheds
- Spanning 5 Land Uses: Commercial, Industrial, High Density Single Family Residential, Low Density Single Family Residential, and Open Space
- Sampled Each Watershed for two years from 2002-2004
- C1-C27 Site ID for Commercial land use trash collection sites

TRASH FROM BALLONA CREEK YEAR 2002-2003

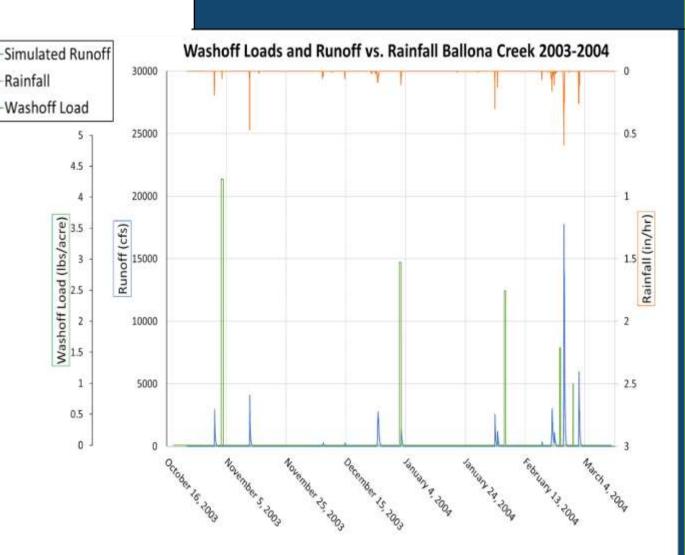

- Data from Los Angeles County Public Works "Trash Baseline Monitoring Report"
- 500 Catch Basin Inserts Across Los Angeles River and Ballona Creek Watersheds
- Spanning 5 Land Uses: Commercial, Industrial, High Density Single Family Residential, Low Density Single Family Residential, and Open Space
- Sampled Each Watershed for two years from 2002-2004
- C1-C27 Site ID for Commercial land use trash collection sites



- First year rainfall **11.32 inches**, with a total load of **3714 lbs.**
- Second year rainfall **5.94** inches with a total load of **1622 lbs.**

• Simulated Runoff from the PCSWMM model for the Ballona Creek Watershed using NOAA rain gauge in Downtown Los

Angeles



- First year rainfall **11.32 inches**, with a total load of **3714 lbs.**
- Second year rainfall **5.94** inches with a total load of **1622 lbs.**

• Simulated Runoff from the PCSWMM model for the Ballona Creek Watershed using NOAA rain gauge in Downtown Los

Angeles

Results

Watershed	Total loading based on PCSWMM simulation (lbs.)	Year
Ballona Creek	93,184	2002-2003
Los Angeles River	3,341,337	2002-2003
Ballona Creek	62,732	2003-2004
Los Angeles River	2,038,963	2003-2004

Thank you!
Kian Bagheri
kbagheri@sdsu.edu
Future Work
 Sensitivity Analysis for Buildup and Washoff
Parameters
 Application of Parameters toward Lower San Diego
River Watershed
Acknowledgments NOAA Grant
Hilary McMillan Overall Program Lead, SDSU Geography
<u>Trent Biggs</u> Debris Sources Co-Lead, SDSU Geography
<u>Hassan Davani</u> Stormwater Modeling Lead, SDSU Civil

Construction Environmental Engineering

Results

Watershed	Total loading based on PCSWMM simulation (lbs.)	Year
Ballona Creek	93,184	2002-2003
Los Angeles River	3,341,337	2002-2003
Ballona Creek	62,732	2003-2004
Los Angeles River	2,038,963	2003-2004

Thank you!
Kian Bagheri
kbagheri@sdsu.edu
Future Work
 Sensitivity Analysis for Buildup and Washoff
Parameters
 Application of Parameters toward Lower San Diego
River Watershed
Acknowledgments NOAA Grant
Hilary McMillan Overall Program Lead, SDSU Geography
<u>Trent Biggs</u> Debris Sources Co-Lead, SDSU Geography
<u>Hassan Davani</u> Stormwater Modeling Lead, SDSU Civil

Construction Environmental Engineering