Predictive Modeling for Soil Moisture Availability and Plant Water-use in the East River Catchment, Colorado

R. J. Hess¹, N. A. Bogie¹, A. Zahori¹, M. Sprenger²

¹San José State University, Department of Geology ²Lawrence Berkeley National Laboratory, Climate & Ecosystems Division

- Snow water equivalent (SWE) across CA and CO from 1993 to 2015.
- Models forecast temperature increases of ~1.0 °C per 10 years in the Upper Colorado Basin (1,800 to 3,500 meters above sea level).
- This study aims to help quantify and predict the ecosystem response to drying conditions.

Freshwater Releases and Climate Change

Siirila-Woodburn et al., 2021

East River Watershed, Colorado

- 300 km² headwater catchment. (2,950 meters above sea level)
- Major tributary to the Colorado River (CR).
- CR supplies water to 40 million people across seven

Isotope Hydrology

Sprenger et al., 2019

East River Field Setup (Two soil profiles)

One beneath Aspen trees —

a second beneath <u>Spruce</u> trees

East River Field Setup

In situ isotope analyzer, measuring ²H and ¹⁸O vapor from probes in soil and trees

Meteorologic Data

Select Trends
Air Temperature (\mathcal{C})
and
Solar Radiation ($W m^2$)

Cumulative Precip. *(mm)* and Baro. Pressure *(mbar*)

Conceptual Approach

Trained the numerical model HYDRUS-1D with:

weather data soil moisture measurements in-situ ratios of deuterium (²H)

 Simulated WY-22 dynamics of soil dry down and rewetting, focusing on the driest months of the year.

Objective Function (Goodness of Fit)

Kling — Gupta Efficiency

KGE = 1 -
$$\sqrt{(r-1)^2 + (\frac{\sigma_{\text{sim}}}{\sigma_{\text{obs}}} - 1)^2 + (\frac{\mu_{\text{sim}}}{\mu_{\text{obs}}} - 1)^2}$$

(-infinity, 1]

Layer 1 (0 to 60 cm-bgs)

Layer 2 (60 to 100 cm-bgs)

Mualem —van Genuchten Equation

$$\theta = \theta_r + \frac{\theta_s - \theta_r}{\left[1 + (\alpha \ \psi)^n\right]^m}$$

 θ : water content [L³ L⁻³]

 θ_r : residual water content [L³ L⁻³]

 $\theta_{\rm s}$: saturated water content [${\rm L^3~L^{-3}}$]

 K_s : hydraulic conductivity [L T⁻¹]

n: pore size distribution [-]

 α : inverse of air entry [-]

m: shape parameter [-]

 ψ : negative pressure [L]

Layer 1 (0 to 60 cm-bgs) Layer 2 (60 to 100 cm-bgs)

Soil Moisture Goodness of Fit: *KGE*_h

(0 to 60 cm-bgs)

Layer 2 (60 to 100 cm-bgs)

Isotope Ratio (²H/¹H) Goodness of Fit: *KGE*_{iso}

Average
Goodness of fit: $KGE_h + KGE_{iso} = KGE_{avg}$

Layer 2

Layer 1

Soil Moisture Dynamics

Matric Potential for Spruce Profile -500 -1000-1500-2500 -3000 15 cm 30 cm -3500 -60 cm Jul 15 15 Oct 15 Aug 15 Sep 2022-Oct

Aspen Profile [KGE_h : 0.39]

Spruce Profile [KGE_h : 0.50]

Isotope Dynamics

Plant water-use

Sap flow rates range 100 to 700 L d⁻¹

1 mm of water use = 1 L m^{-2} = 200 L site⁻¹

- Aspen and spruce rely heavily on headwater snowmelt.
- Changes to the timing and quantity of snowmelt will limit availability and extend the dry season.
- Revised management strategies for high elevation ecosystems are necessary.

Next Steps

- Fit WY-23 data to model simulations
- Perform a water balance for WY-22 and WY-23
- Model 5, 10, and 20 year scenarios, increasing temperature inputs and reducing rainfall inputs

Questions? raymond.hess@sjsu.edu

1	
2	
3	SUBSEASONAL INFILTRATION AND UPTAKE DYNAMICS IN THE EAST RIVER
4	WATERSHED USING NUMERICAL MODELING TRAINED WITH HIGH FREQUENCY
5	STABLE ISOTOPE FIELD MEASUREMENTS
6	
7	
8	
9	A Thesis Presented to the Faculty of the
10	Department of Geology, San José State University
11	- -
12	
13	
14	In Partial Fulfillment of the Requirements for the Degree
15	Master of Science
16	
17	by
18	·
19	Raymond J. Hess
20	·
21	
22	
23	
24	May 2024
25	191dy 2024
26	
27	
28	