


General overview of the'BSM1 plant
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Figure 1: General overview of the BSM1 plant
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Variable Value

Niot <] £ N_m_:
COD <100 g COD.m™
- <4gN.m”
TSS <30 g SS.m~
<10 g BOD.m™

Effluent quality imits

Effluent wviolations
95% percentile for effluent SNH (Ammoniaf®5) = 10.6066 g N/m3
95% percentile for effluent TN (THS5) = 20.1673 g N/m3

95% percentile for effluent T55 (T5595) = 20.9932 g 55/m3

The maximum effluent total nitrogen level (18 mg N/1) was violated
during 2.1979 days, i.e. 31.35%88% of the operating time.
The limit was wviolated at 9 different occasions.

The maximum effluent ammonia nitrogen level (4 mg N/1) was violated
during 4.6667 days, i.e. €6.6667% of the operating time.

The limit was wviolated at 8 different occasions.

Effluent quality
violations

« Problem: Three (Dry, Rain,
Storm) scenarios have violations
on effluent quality

« Goal: Improve the effluent
quality (lower the violations) by
using better control system
design
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Data Driven
Modeling using
PRBS signal

* Pseudorandom Binary
Sequence(PRBS)
* Binary Sequence (two values)
* Random

* Commonly using for testing
and evaluating systems
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Measured (mydata) and simulated model output

1 z1am2
if4: 1.254
1 E:1.292
Itf1: 1.182
arxfd1:0.6176
larx541: 0.6037
1 [aradd1: 0.5064

nlarxd; -0.9117
1 nlarc2: -0.9428
nlarxi:-1.484

300 400 500 00 700
Time

Reference data: mydata, Horizon: SIMULATION

Bad fitting with
traditional data
driven methods

* Input:
* Internal Recycle Flow Rate
« KLAS5 (oxygen transfer
coefficient)
* Qutput:

* NO3-N(Nitrate) in the Second
Anoxic Compartment (SNO2)

* Dissolved Oxygen in the Last
Aerated Compartment (SO5)

* Best fit range: 0-3 %




« We model the control system rather
than modelling the process
« Methodology

o Generate 15 rain and 15 storm
scenarios

o Generate random combinations
of PI parameters and setpoints

Machine

o Run BSM1 simulation and collect
the data

o Build the regression model

Learning Based
Control

o Use the regression model to
search the
optimal combinations of P
parameters and setpoints




Generating Scenarios

{Three dynamic influent (Dry, Rain, and Storm)

{Ra'n influent: Dry influent + 1 rain event

[Storm influent: Dry influent + 1storm event + 1 rain event

Following the pattern, we modify when the event starts, how
long it lasts, and the magnitude of the peak and trough.




Generating Scenarios

* Pre-control phase: 0-7s (first week)

* Control action: 7s - 14s (second week)
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* Influent particulate concentrations (Xi,
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* Methodology of generating rain
scenarios

g=3
T

o Modify the influent flow

o Modify the load concentrations follow
the dilution calculation




Simulation and data collection

Generate

random combinations of
Pl parameters

and setpoints

Run simulations of each Collect the jointed
combination of P! violation time of each
parameters and setpoints simulation

(total 9 variables) with 30

scenarios

Take the average
violation time of 30
scenarios with

each combination of Pl
parameters and setpoints




Machine
Learning
Based
Regression
model

Predictors: combination of Pl parameters and setpoints

(total 9 variables)

Response: the average violation time

Using the machine learning regression model, we can
estimate the relationship between Predictors and
Response

Once we built the model, we can use it to make

prediction of new preditors




S . Dry: 68.6429%
Violation time default Pl 4

Rain: 73.3631%

performance (no

Storm:
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Modelling
res u It 400 sets data

Range:
66.9296% to
80.8681%

Simulation result




_result

Sortby (RSquared (V.. v |[i ][ 1]

|[-"-] 2.25 Neural Network | R-Squared (Validation): 0.84]
Last change: Bilayered Meural Network 970 features

R-Squared {(Validation): 0.83
9o features

|C] 2.23 Meural Metwork
Last change: Medium Meural Network

R-Squared {Validation): 0.79
9o features

|[.-] 247 Ensemble

Last change: Bagged Trees

R-Squared {Validation): 0.78
9o features

|C] 2.24 Meural Network

Last change: Wide Neural NMetwork

|C] 2.22 Meural Network

Last change: Marrow Meural Metwork

R-Squared {Validation): 0.72
9o features

R-Squared {(Validation): 0.69
9o features

|C] 2.6 Tree

Last change: Medium Tree

R-Squared (Malidation): 066
9o features

|C] 1 Tree

Last change: Fine Tree

R-Squared (Malidation): 066

9o features

|C] 2.5 Tree

Last change: Fine Tree

R-Squared {(Malidation): 065
9o features

|C] 2.26 Meural Network

Last change: Trlayered Meural Network

|C] 2.18 Gaussian Proce R-Squared (Validation): 0 56

Last change: Squared Exponential GPR 9o features

R-Squared {Validation): 056
99 features

|C] 2.7 Tree

Last change: Coarse Tree

| P I Zanccian Prnneo B_Crarad Mdalidatinm®- M RR

Model 1 Model 2.1

Summary »

Model 2.25

Model 2.25° Meural Metwork

Status: Trained

Machine Learning Based Modelling

Predictions: model 2.25

Training Results
RMSE (Validation) 0.7254 80
R-Squared {\WValidation) 0.84 .
MSE (\Validation) 0.52621
MAE {\alidation) 0.41806
FPrediction speed ~5200 obsfsec 78
Training ime 4 2216 sec
Model size (Compact) ~8 kB
76 .,
- Model Hyperparameters @ L ®
= !
Preset: Bilayered Meural Network a ]
Mumber of fully connected layers: 2 @ 741 5
First laver size: 10 —
Second layer size: 10 8 S e o
Activation: ReLU = * e
N o o 12
Iteration limit: 1000 £ ® * L
Regularization strength (Lambda): 0
Standardize data: Yes L o7
T0 - »
¢ Feature Selection: 99 individual features selecte ® »
» PCA: Disabled .
v Optimizer: Mot applicable 681 ¢
66 - b
66 68 70 T2 74 76 78 80
True response
Data set: Mewirain Observations: 400 Size: 34 KB Fredictors: 9 FResponse: VioAvg ‘alidation: 5-fold cross-wvalidation



Neural network

« Input layer: Predictors (9 variables)

« First layer: 10 neurons
« Second layer: 10 neurons

« Output layer: Response

« Fach neuron has its own set of
weights and a bias

« Fach neuron output can be
defined by 2 steps

o XT* Wi+ X*we +b

o An activation function (RelLU)

x, x>0

ReLU(x) = {0 0

« Use the previous layer values to
calculate its output




Generate more combination of P|

Generate parameters and setpoints (total 9 variables)

Continuing
work

Use Use the regression model to make predictions

Search the optimal combination with the lowest
value of response

Search
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