Development of platform for novel molecular method for detection of Coxsackievirus B3 in recycled water

Andrew Townsend¹, Jonathan Auyong¹, William Andreopoulos¹, Marelyn Negrete², and Leila Khatib²

Department of Computer Science
Department of Biological Science

California approach- One Water

- EVERY DROP COUNTS
 - Stormwater capture
 - Expanding green areas and controlling flow
 - High quality water
 - Sea level rise- mobilization of legacy mercury
 - Storage capacity- Reliable source
 - Almaden Lake
 - Groundwater wells
 - SF- deeper
 - Recycled water- Advanced water treatment
 - "Fit for purpose"
 - City of San Francisco Recycled Water Ordinance

Recycled water supply

- Water and wastewater supplies
 - United States
 - 7-8% water recycled
 - California leads with planned reuse projects
 - Valley Water
 - By 2025, 10% of supply will be recycled water
 - SFPUC
 - By 2025, 2 MGD delivered

Recycled water quality

- Water quality standards for infectious disease
 - Non-potable reuses
 - No fecal coliform detected /ml over 7 day median unrestricted use
 - 200 fecal coliform detected/ml over 7 day median restricted use

• TDS standards

*U.S. Environmental Protection Agency secondary standard as recommended maximum TDS level for drinking water.

https://beheard.valleywater.org/purifiedwaterproject/widgets/34076/faqs

Water regulations

- Clean Water Act
 - Discharge into navigable waters
 - US EPA ECHO
 - Sewage
- Safe Drinking Water Act
 - Sets safe drinking water standards
 - MCL
 - Viruses = 99.99% removal/inactivation
 - California: reported via CCR
 - Enhanced Surface Water Treatment Rule- promulgated for states to set standards
- Title 22 California- Recycled water
 - 12-log reduction (99.9999999999) of viruses for Indirect Potable Reuse
 - 1:10000 risk of viral infection

Viruses in Sewage

- AiV- Aichi virus
- PMMV- Pepper mild mottle virus
- EV Enterovirus
- HAV- Hepatitis A
- NoV Norovirus
- RoV- Rotavirus

Virus nucleic acid stable and present in effluent

US EPA direction

Viral surrogates- needed in water reuse as supplies come online

Viral surrogates	Virus/100 ml sewage	Genome
F specific bacteriophage	10 ⁵ -10 ⁷ PFU	+ssRNA or dsDNA
Somatic bacteriophage	10 ⁵ -10 ⁶ PFU	dsDNA
CrAssphage	10 ⁶ -10 ⁹ gc	dsDNA
Tomato mosaic virus	~10 ⁶ gc	+ssRNA
PMMoV- Pepper mild mottle virus	10 ⁶ gc	+ssRNA

Monitoring methods for viruses in water and wastewater

Method	Time to results	Infrastructure/reagents			
US EPA 1615	>2 days	High			
US EPA 1645	>2 days	High			
Cell culture	>1 day	High			
ICC-PCR	>1 day	High			
RT-qPCR	>2 hours	Moderate			
PCR	>2 hours	Low			
Riboswitch	15-60 minutes	Low			

Biosecurity preparedness findings

- GHSI findings
 - No county fully prepared
 - ~7% prevention
 - ~19% detection
 - ~5% rapid response

- Factors for preparedness
 - Prevention
 - Detection
 - Rapid Response
 - Health system
 - International norms
 - Risk environment

Alternative Detection

Need for New Technology without the Technology

Riboswitch detection of +ssRNA viruses

Approach

- Coxsackievirus B3= model organism
 - Trigger sequence development
- Published riboswitch sequences
- Three open access platforms
 - Modified with alternative code specific for nucleic acid/nucleic acid interactions
 - Prediction of Minimum Free energy
- Interface development

Ribologic

- Predicts the correct secondary structure with associated ligand
- Limitation- does not predict secondary structure when a random point mutation occurs
- Limitation- Does not always produce the exact base pairing when point mutations or changes in the sequence are produced.
 - Change one base and the exact base pairing will not be produced.
- Salinity- could possibly be incorporated if base pairing is resolved

Vienna RNA

- Predicts secondary structure of nucleic acids
- Code is C++- We are working in Python.
- Does salinity (added 2023)

http://rna.tbi.univie.ac.at/

Nu Pack

- Open source code
- Predicts correct secondary structure with introduction of mutations
- Easy to use but not represent different different levels of salinity- Only 1M NaCl
- Output variables for analysis
 - Single strandedness score
 - How likely the secondary structure available for binding or trigger sequence for annealing
 - 1 all unpaired bp;
 - 0 all paired bp (secondary structure)
 - Normalized ensemble defect- how far secondary structure away from true secondary structure
 - low number for high ensemble (true secondary structure; proper bp matching)
 - Switch minimum free energy- promoter to gene to express
 - <-9.5 free energy for stable structure
- Results thus far
 - 70% predicted accuracy for the secondary structure
 - Develop suite of riboswitch/trigger sequence combination and test in the lab
 - Code developed to reduce time when iterative trigger sequences are introduced
 - 32 hours to 4 seconds

Example of output

Riboswitch index	Trigger index	Riboswitch	30bp Trigger switch CVB3	Riboswitch single-strand	Trigger single_strand	Riboswitch ensemble	Trigger ensemble	Riboswitch/trigger /target ensemble	Free Energy score ensemble (MFE)
0	0	GGGGAAGAGUCUAUUG AGCUAGUUGGUAGUCCU AUACAGAAACAGAGGAG AUAUAGGAUGACCAACT AGAACCUGGCGGCAGCG CAAAAGAUGCGUAAA	AGGACTACCAACTAGCTCAATAGACTCTTC	<mark>0.75</mark>	0.55	<mark>0.17</mark>	0.29	<mark>0.13</mark>	<mark>-66.9</mark>
0	1	GGGGUUUCAUUUUAUU CCUAUACUGGCUGCUUA AUACAGAAACAGAGGAG AUAUTAAAUGGCCAGTAT AAACCUGGCGGCAGCGC AAAAGAUGCGUAAA	TAAGCAGCCAGTATAGGAATAAAATGAAAC	<mark>0.48</mark>	0.69	<mark>0.20</mark>	<mark>0.12</mark>	<mark>0.13</mark>	<mark>-43.5</mark>
0	2	GGGGAAGAGUCUAUUG AGCUAGUUGGUAGUCCU AUACAGAAACAGAGGAG AUAUAGGAUGACCAACT AGAACCUGGCGGCAGCG CAAAAGAUGCGUAAA	ATAAGCAGCCAGTATAGGAATAAAATGAAA	<mark>0.69</mark>	0.67	<mark>0.17</mark>	<mark>0.12</mark>	<mark>0.14</mark>	<mark>-43.5</mark>
0	3	GGGGAAGAGUCUAUUG AGCUAGUUGGUAGUCCU AUACAGAAACAGAGGAG AUAUAGGAUGACCAACT AGAACCUGGCGGCAGCG CAAAAGAUGCGUAAA	GTATAAACCCAACAAAGGGATATATAATAG	<mark>0.69</mark>	<mark>0.38</mark>	<mark>0.21</mark>	0.40	<mark>0.18</mark>	<mark>-38.3</mark>

When we change the trigger sequence, the parameters for single-strandedness, ensemble defects and free energy vary

Changing the trigger sequence changes the structure and stability of the Riboswitch/trigger sequence and the Riboswitch/trigger sequence complex.

Riboswitch structure optimization

• Complex ensemble (Trigger sequence and riboswitch to target sequence)

Yellow= filler sequence

Complex 3-CVB3

Riboswitch structure optimization platform

- Single strandedness for trigger sequence-
 - Probability of the sequence free to anneal

Yellow= filler sequence

Data interface

• Developed script:

 Quick categorization and storage of data of RNA sequences uploaded through Excel Files

•Next step: Develop script for:

- Input- Uploading files with target, trigger sequence, linker, and riboswitch sequence
- Output- free energy calculations

ידושר דסש: 82 Linker Row: 1 Riboswitch Row: 71 "arget Sequence: AATAATTAATATTGTGTAGTGAATGATGAATGAATGA rigger Sequence: TTGAAGAGGCTATATTTTCCA<u>AGTATATAGGAAA</u>

Primer row: 82 Linker Row: 1 Riboswitch Row: 72 Farget Sequence: AATAATTAATATTGTGTAGTGAATGATGGAATGATTG Frigger Sequence: TTTGAAGAGGCTATATTTTCCA<u>AGTATATAGGAAA</u>

Primer row: 82 Linker Row: 1 Riboswitch Row: 73 Farget Sequence: AATAATTAATATTTGTGTAGTGGAATGATGGAATG Trigger Sequence: TTTGAAGAGGCTATATTTTCCAAGTATATAGGAAA

escription of Riboswitch: 144 orthoganal first gen

Description of Riboswitch: 144 orthoganal first gen

escription of Riboswitch: 144 orthoganal first gen

etters of Riboswitch: GGGAUGGAGAUUGAUUAUGAUUGGAUGGGUUAAACAGAGGAGAUAAGCAAUGCCAAUCAUA<u>AACCUGGCGGCAGCGCAAAAGAUGCGU</u>A

etters of Riboswitch: GGGAGUAAGAAUUGUGAUAAAGUAAUGUGCGUGAACAGAGGAGACACGCAAUGUACUUUAUCAACCUGGCGGCAGCGCAAAAGAUGCGUA

etters of Riboswitch: GGGUAAGAUGAUAAGAGUAUAGAUAUG<u>UUGAUGGACAGAGGAGAGACAUCAAAUGAUCUAUACUAACCUGGCGGCAGCGCAAAA</u>GAUGCGUA

inker: AACCTGGCGGCAGCGCAAAAG

inker: AACCTGGCGGCAGCGCAAAAG

inker: AACCTGGCGGCAGCGCAAAAG

Conclusions

- Platform can predict proper base pairing.
- Predictive platform generates free energy prediction based on the riboswitch/trigger sequence.
- Iterative changes initially were at 32 hours
 - New code= predictions made in 4 seconds
- Free energy varies with iterative changes of the trigger sequence.