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Background

• Various factors such as climate change, forest 
densification, etc. can be associated with:
 longer, more severe wildfire seasons
 more burned area (Dennison et al., 2014; Pausas & 

Keeley, 2021; Radeloff et al., 2005)

• Subsequently, fires can impact:
 water supplies, water quality
 flooding, changes in peak flows
 terrestrial and aquatic ecosystems (Niemeyer et al., 2020)
 increased likelihood of hazardous and deadly debris flows 

(Esposito et al., 2019; Nalbantis & Lymperopoulos, 2012).

(Wellman, 2018)



General Theory of 
Post-Fire Hydrology
• Less vegetation
 Reduced evapotranspiration 

and interception
 More water passing through

• Burning/volatization of material
 Reduced soil infiltration
 Also boosts water repellency

• Ultimately…
 More runoff & erosion

(Hallema et al., 2017; 
Ebel & Moody, 2013).



Problem Statement

• The measurable extent to which fires affect the hydrology of a watershed has proven difficult. 
Some challenges include:

• limited research efforts,
• lack of available data (Seibert et al., 2010),
• and short research timespans (Moody et al., 2013)

• Fire agencies need reliable data for accurate predictions to make decisions (Chen et al., 2013).

• Knowledge gaps also arise in addressing postfire hydrology for coastal-redwood forests.



Objective

• Evaluate the hydrological responses of the Little Creek watershed for hydrologic years (HY) 2021 
through 2024 after exposure to the 2020 CZU Lightning Complex Fire.

• Specific sub-goals include:
• Develop rating curves based on stage and streamflow data.
• Develop a time series of streamflow and rainfall, and a compilation of storm events.
• Analyze the pre- versus post-fire storm volume and peak flows via linear regression analysis
• Make post-fire runoff predictions from commonly used post-fire assessments.
• Compare the post-fire runoff predictions to the actual post-fire runoff calculations.



Study Location



Procedure • Data Collection – rainfall, stage, and streamflow
• Additionally calculate API (soil moisture indicator)

Rainfall StreamflowStage



Procedure
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• Rating curves plotted
 these curves relate stage to streamflow
 were used to convert stage data into a 

continuous time series of streamflow



Procedure

• Identify and separate events on the hydrographs into “storms”
• Use baseflow recession rates to determine end of storm events

• Gather peak-flow and total storm volume from the events

• Compare post-fire data (2023-2024) to pre-fire calculations, 
which are estimated from a statistical regression equation from 
2001-2008 data, Dupuis, 2022.



Concurrent Results (HY2023)
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Concurrent Results (HY2024)
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Sample Storm Separation
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Preliminary Results: Pre- versus Post-Fire 
Peak Flows
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Preliminary Results: Pre- versus Post-Fire 
Storm Volumes
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Next Steps
• Analyze the pre- versus post-fire storm volume and peak flows via linear regression analysis
• Use Little-Creek data to improve commonly used post-fire flood-assessment estimates
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