

Reservoir Operations Impacts on Socioeconomic Drought in Regulated Basins

A. Mehran¹, A. AghaKouchak², A. Dogra¹, A. Alkamez¹

¹ San Jose State University, San Jose, CA ² University of California, Irvine, CA **Meteorological** Drought: Deficit in precipitation

Agricultural Drought: Deficit in soil moisture

Hydrologic Drought: Deficit in runoff/groundwater/storage

Snow Drought: Abnormally low snow for the time of the year

Socio-Economic Drought: Imbalance between supplies and human water demand leading to socioeconomic impacts.

Anthropogenic Drought: water stress caused or intensified by human activities, (e.g., increased demand, mismanagement, climate change from anthropogenic greenhouse gas emissions, growing energy and food production, environmental policy, and land use changed)

Mehran A., et al., 2015, A Hybrid Framework for Assessing Socioeconomic Drought, Journal of Geophysical Research.

Mehran A., et al., 2017, Compounding Impacts of Human-Induced Water Stress and Climate Change on Water Availability, **Scientific Reports**.

AghaKouchak A., et al., 2021, Anthropogenic Drought: Definition, Challenges and Opportunities, *Reviews of Geophysics*, 59, e2019RG000683.

A hybrid framework for water stress assessment: linking climate variability and local resilience and human influence (Mehran et al., 2015, JGR)

A hybrid framework for water stress assessment: linking climate variability and local resilience and human influence

Mehran et al., JGR, 2015

Inflow-Demand Reliability Indicator

$\alpha_{t} = \frac{\sum_{i=t-m+1}^{t} Q_{in_{i}} - Q_{\exp_{t}}}{Q_{\exp_{t}}}, Q_{\exp_{t}} = \begin{cases} \sum_{i=t-12}^{t-13+m} Q_{out_{i}}, m = 6\\ \sum_{i=t-m+1}^{t} Q_{out_{i}}, m = 12 \end{cases}$

Water Storage Resilience Indicator

$$\beta_t = \frac{St_t + Q_{in_t} - Q_{out_t} - O_{\min} - Q_{\exp_t}}{Q_{\exp_t}}$$

where;

 Q_{in} ; monthly inflow in month *i* Q_{exp_i} ; total expected water demand during the projected time frame St_i ; reservoir storage at month *i*

> *i* is ranging from 1 to *N* (sample size) *t* is ranging from 13 to *N*

Anthropogenic Drought Assessment:

A hybrid framework for water stress assessment: linking climate variability and local resilience and human influence

Within-year and over-year reservoir-demand analysis: •

WSR

•

$$\alpha_{t} = \frac{\sum_{i=t-m+1}^{t} Q_{in_{i}} - Q_{est_{t}}}{Q_{est_{t}}} \quad , Q_{est_{t}} = \begin{cases} \sum_{i=t-12}^{t-13+m} (Q_{out})_{i}, & if \ m = 6\\ \sum_{i=t-m+1}^{t} (Q_{out})_{i}, & if \ m = 12 \end{cases}$$

$$\beta_t = \frac{St_t + Q_{in_t} - Q_{out_t} - O_{min} - Q_{est_t}}{Q_{est_t}}$$

Empirical probability ٠

$$P(x_t) = \frac{l - 0.44}{N + 0.12}$$

Standardized
index
$$SI(P(x)) = \begin{cases} sI(P(x)) \\ if \ 0 < P(x) \le 0.5, \ + \left(k - \frac{C_0 + C_1 k + C_2 k^2}{1 + d_1 k + d_2 k^2 + d_3 k^3}\right) and \ k = \sqrt{\ln(1/P(x)^2)} \\ if \ 0.5 < P(x) \le 1, \ - \left(k - \frac{C_0 + C_1 k + C_2 k^2}{1 + d_1 k + d_2 k^2 + d_3 k^3}\right) and \ k = \sqrt{\ln[1/(1 - P(x))^2]} \end{cases}$$

Combine univariate indicators ٠

$$P_{j_t} = \Pr\left(\mathrm{SI}(\alpha) \le \mathrm{SI}(\alpha_t), \mathrm{SI}(\beta) \le \mathrm{SI}(\beta_t)\right) \longrightarrow P_{j_t}(\mathrm{SI}(\alpha_t), \mathrm{SI}(\beta_t)) = \frac{l - 0.44}{N + 0.12}$$

1

Anthropogenic Drought Assessment:

A hybrid framework for water stress assessment: linking climate variability and local resilience and human influence

Mehran et al., JGR, 2015

- The ACF is a huge basin draining an area of 19,573 square miles across the states of Alabama, Georgia, and Florida.
- The ACF Basin is also home to nearly 6.8 million people. Water stress becomes much more prevalent in the ACF during times of drought; therefore, water management in this basin is important.

	Storage	Max	Surface	Drainage	ļ						
Reservoirs	Capacity	Depth	Area	Area	FRM	WS	HPG	NAV	FW	REC	WQ
	(ac-ft)	(m)	(acres)	(mi^2)							
I ake I anier	1 087 600	/18	37 000	103/	\land	\land	\land	\land	\land	\land	\land
	1,007,000	40	57,000	1034							
West Point	306,127	26	25,864	2406		$\mathbf{\Diamond}$		\diamond	\diamond		\diamond
Walter F.									\wedge		
George	244,400	30	45,181	4020					\bigcirc		
George Andrews	8,200	8	1,540	750				$\mathbf{\Diamond}$	\diamond	$\mathbf{\Diamond}$	$\boldsymbol{\Diamond}$
Lake Seminole	66,847	9.1	37,500	8954			\diamond	\diamond	\diamond	\diamond	\diamond

FRM = Flood Risk Management; WS = Water Supply; HPG = Hydroelectric Power Generation; NAV = Navigation; FW = Fish And Wildlife Conservation; REC = Recreation; WQ = Water Quality

Cumulative Annual Precipitation (CHIRPS) vs. SPI

MSRRI Vs. NDVI

Sacramento basin

MSRRI on Major Reservoirs

45°N

40°N

35°N

30°N

0

Questions?