stress REG

truebner

Umweltplanung

badenova NETZE

Monitoring- and Modelling System for the assessment of stress on groundwater resources and drinking water supply

Kerstin Stahl¹, Jost Hellwig¹, Kathrin Szillat^{1*}, Robin Schwemmle¹, Julian Vahldiek¹, Jens Lange², Markus Weiler², Barbara Herbstritt², Daniel Glaser^{2*}, Sylvia Kruse³, Tanya Merger³, Jakob Kramer^{3*} Elisabeth Angenendt⁴, Christian Sponagel⁴, Julian Börner^{4*}, Alexander Krämer⁵, Christof Hübner⁶

*PhD candidates

¹Chair of Environmental Hydrological Systems, University of Freiburg (UHyS) ²Chair of Hydrology, University of Freiburg Freiburg (HF) ³Chair of Forest and Environmental Policy, University of Freiburg (FUP) ⁴FG Farm Management, University of Hohenheim (UHOH)

⁵WWL ⁶TRUEBNER

SPONSORED BY THE

The StressRes Project Team!

Meeting, March 2024 in Hohenheim

Last week in Frankfurt!

Background and Objectives

Stressors such as drought, competing water usages, pollution and climatic and economic changes require:

Interdisciplinary analyses, new monitoring tools and integrated models!

- Situation: Analysis of spatial, political und economic conditions and stressors
- Monitoring direct und indirect groundwater recharge:
 - Surface water groundwater interaction
 - Observation with remote transmission of data (incl. water quality)

• Model Stress Tests: Stress Test analysis with a coupled model (agriculture-surface water-groundwater-water use)

• Stress Test-Demonstrator: Translation of results into generalized and widely applicable 'event scenarios'

stress **RES**

FUP

HOH

T. Baycheva

Jakob Krame Sylvia Kruse

Julian Börner

> s. Poster

Governance situation for groundwater-drinking water management

Policy Analysis Agriculture-Water

LURCH

Multi-level governance with nested but uncoordinated policies - difficult to respond to recent strategies

Two interview studies

- 1. Priorities in decision making
- 2. Social acceptance of digital solutions
 - Water rights / water allocation decisions differ strongly
 - Objective rules/criteria vs room for individual decisions
 - Real time monitoring as a decision criterion is used more by utilities than by agencies
 - Slow uptake of digital solutions due to privacy issues, data security etc.

UHvS/HF Kathrin Szilla Jost Hellwig Max Schmit Kerstin Stahl

HOH

Julian Börner Ch. Sponagel E. Angenendt

FUP Sylvia Kruse > s. Poster

•

Spatial analysis of all drinking water protection areas in Germany

- How are landscapes of DWAs characterized? •
- Can they be grouped into similar situations?

Different definitions per federal state Different overall areas (5% to 30%) \succ

Geo-Data: interdisciplinary attributes

- Area, elevation, etc.
- Hydrogeology, groundwater drought response time
- Climate -
- Land cover and agricultural use details (e.g. stock density, crop type, %pasture, %irrigated, no. of farms
- Type of water supply source, demand, population, water cost
- Generalized maps of water quantity and _ quality 2022 (acc. to EU water framework directive reports)

UHyS/HF Kathrin Szillat Jost Hellwig Max Schmit Kerstin Stahl

HOH Julian E

Julian Börner Ch. Sponagel E. Angenendt

FUP Sylvia Kruse

Spatial analysis of all drinking water protection areas in Germany

- How are landscapes of DWAs characterized?
- Can they be grouped into similar situations?

Analyis of the acceptance of groundwater protection by farmers

Survey as Discrete Choice Experiment

- N-Reduction more accepted than herbicide-Red.
- Requested waiver for irrigation water cost acc'ly

HS

Monitoring developments: gw recharge and nitrate leaching

Mini-"UV-Vis-Spectrophotometer" (LED+photodiode)

Drone-mounted thermography to detect gw-sw

stress **RES**

Model integration – work in progress

UHOH Ch. Sponagel Julian Börner E. Angenendt

UHyS/HF

R. Schwemmle Jost Hellwig Max Schmit Kerstin Stahl Markus Weiler

UHOH *Ch. Sponagel Julian Börner E. Angenendt*

UHyS/HF

R. Schwemmle Jost Hellwig Max Schmit Kerstin Stahl Markus Weiler

WWL

> s. Poster

Lu	RCI	H	\approx	
Grundwasser	nachhaltig	bewi	rtschaften	

Targeted Stress Test Scenarios – planned work

- Targeted "stresstest" scenarios instead of climate projections
- Initial Scenarios: combinations of known drought events with different crop scenarios and with/without irrigation
- Co-designed stakeholder scenarios: 'future' storylines combining multiple usages and transformations

Hydrological Reference Scenario	Reference	Szenario Ag.Transformation
Conditions of last 20 years	Status-Quo Ag & Hydro-Clim	NOcsPS (no pesticides, redued N- fertilizer)
Water use stress?	irrigation demand & gw abstraction	yield loss? effect of N?
Drought Stress Test Scenarios	Event-Scenarios Hydro/Cllimate	Event-Scenarios combined
E.g. meteorology und hydrology of the extreme events of 2003 or 2018-19,	Status-Quo Ag + drought, + irrigation	NOcsPS agriculture + drought, +irrigation

First results and further planning

- Many recent triggers for transformation
 - Pressure at all governance levels
 - > Hesitation in decisions, lacking digital solution implementation
- Typical 'situations' can be identified, but
 - Harmonized data availability or acces (e.g. of real. drinking water catchment areas) lacking
- Monitoring/Messung
 - New sensors, new opportunities locally scalable?
- Integrative modelling of agriculture-hydrology-hydrogeology necessary
 But, complex, time and data consuming applicability?
- Event Stresstest-Scenarios als Tool
 - Test if more targeted and more applicable than climate projection ensemble model chains

